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Abstract
We derive and demonstrate a practical and accurate algorithm designed to
impose Dirichlet boundary conditions (specified boundary velocity) on the
edge nodes of a lattice Boltzmann fluid simulation space. The current algorithm
models the lattice fluid on boundary and bulk nodes to identical accuracy and
in a demonstrably equivalent manner. Whilst this new method applies to
rectangular geometries, it adds to our previous method [2] (i) the condition of
mass conservation and (ii) the ability to treat with unimpaired accuracy both
internal and external corners.

PACS numbers: 47.11.Qr, 47.85.−g

1. Introduction

Accurate representation of boundary conditions is essential in all computational fluid
dynamics. Here we derive, then demonstrate, a robust simulation lattice closure for one
isothermal, single phase, two-dimensional lattice Boltzmann (lB) [1] method. Our readily
adaptable approach evolves fluid at a boundary to the same accuracy as the bulk lB fluid
and extends our previous technique [2] in two ways. First we shift emphasis from boundary
pressure onto boundary mass conservation (necessary for multi-component applications) and,
second, we enable the treatment of corner geometries with no diminution of accuracy. In these
respects, our new method is as convenient as the popular lB strategy of mid-link bounce-back
[1]; however it has additional advantages of (i) accuracy, (ii) imposing boundaries on a given
lattice node (not e.g., at the mid-point between nodes), (iii) being instantaneously accurate
and (iv) being capable of representing moving fluid boundaries, including boundaries crossed
by fluid.

Solutions of the Navier–Stokes and continuity equations, v(r, t), P (r, t), are most
conveniently closed by Dirichlet boundary conditions on fluid velocity (only):

v(r, t)|r′t = u0(r′, t), (1)

where r′ denotes a position on the boundary of the flow domain and u0(r′, t) is a specified
boundary velocity distribution. The several lattice closure methods in lB [1] each amount to
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Figure 1. A boundary node on a horizontal wall, immediately prior to a collision step. Links
i = 1, 2, 3 (i = 0, 4, . . . , 8) all point into solid (fluid). The wall location is denoted by the dashed
line. Propagated link data are denoted by an arrowhead on the link, lack of data by an open circle.

a means of imposing a given u0(r′, t). Bounce-back has been carefully evaluated (at steady
state, note) by a number of workers (e.g. [3, 4]) and He and Zou et al have shown how
it is possible analytically to predict boundary slip velocities [5]. Later, more accurate lB
boundary algorithms involve bouncing-back the non-equilibrium part of the lB momentum
densities [6]; extrapolation [7]; the introduction of a counter-slip velocity [8]; second-order
bounce-back [9] and Skordos [10] has solved the problem of boundary closure by deriving
auxiliary partial differential equations which may be solved for lattice boundary information.
Of some importance here is one of the most overlooked and most general approaches to
simulation lattice closure—the locally second-order boundary method (LSOB) of Ginzbourg
and d’Humières [11]. In a recent innovation, Ansumali and Karlin have developed a lB no-slip
boundary condition from kinetic theory [12] and Sbragaglia and Succi have calculated slip
flow resulting from boundary conditions based in kinetic theory [13].

In this paper, we derive, test bench and then evaluate a tractable, practical, simple-to-
implement and portable closure step which is demonstrably equivalent to applying Dirichlet
boundary conditions. Our method assumes a known boundary velocity and local mass
conservation. It yields correct behaviour at every time step, represents boundary lattice
fluid to the same accuracy as the bulk lattice fluid and it may be applied to immiscible fluids
in contact at a boundary. We derive the method for a locally flat wall at which fluid is moving
(with a specified velocity) in section 3.1; then summarize equivalent results for internal and
external corners in section 3.2 and, briefly, comment on other cases in section 3.3. To evaluate
and demonstrate our method we present accuracy plots based upon (exactly solved) duct flow
and stream functions obtained from a square cross-section lid-driven cavity in section 4.

It is henceforth assumed that our lB boundary nodes lie infinitesimally within the lattice
fluid, which, we again stress, is assumed to be moving at a specified velocity. We work in
2D, using the popular D2Q9 lattice (see figure 1). However, our analysis generalizes to 3D
directly, by following the principal steps and analysis presented here. For consistency and
simplicity we use, here, the notation and approach of our previous work [2].
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2. Background

We take the two-dimensional, nine velocity D2Q9 LBGK model of Qian and d’Humières
[14], analysed in detail by Hou et al [15]. Denote vectors of the velocity basis ci and use
the i-indexing of figure 1. Collision and propagation of lB’s primary quantity, the link-based
momentum distribution function fi(r, t), i = 0, . . . , 8 is written as

fi(r + ciδt , t + δt ) = f
†
i (r, t) = fi(r, t) +

δt

τ

(
f

(0)
i (ρ, v) − fi(r, t)

)
+ tpG, (2)

where δt represents the time step; τ(>1/2) determines a lattice fluid viscosity:

ν =
(

2τ − 1

6

)
�x

δ2
t

, (3)

f
†
i (r, t) is the post-collision, pre-propagate value of the momentum density; tpG is a source

term which may be used to represent a uniform pressure gradient [1, 16] or interfacial tension
in the case of multiple immiscible fluids [1], �X is the lattice spacing and all other symbols
have their usual meaning [14, 15]. Henceforth we shall set �X = δt = 1.

The macroscopic fluid density and momentum are defined by moments of the fi’s:

ρ =
∑

i

fi, ρv =
∑

i

fici , (4)

and the equilibrium distribution function, f
(0)
i , is [14, 15]

f
(0)
i (ρ, v) = tpρ

[
1 +

v · ci

c2
s

− v2

2c2
s

+
(v · ci )

2

2c4
s

]
. (5)

In equation (5), weight tp = 4/9, 1/9, 1/36 for i = 0, i even, i odd respectively (figure 1);
speed of sound cs = 1/

√
3 for the D2Q9 lattice. The choice of f

(0)
i given in equation (5)

underwrites relations:

ρ =
∑

i

f
(0)
i , ρv =

∑
i

f
(0)
i ci , (6)

and also the pressure tensor:

�
(0)
αβ ≡ 1

3
ρδαβ + ρvαvβ =

∑
i

f
(0)
i ciαciβ . (7)

Higher order contributions to fi(r, t), denoted by f
(n>0)
i , are introduced through the Chapman

Enskog expansion [15]:

fi = f
(0)
i + δtf

(1)
i + δ2

t f
(2)
i + δ3

t f
(3)
i + · · · (8)

Equation (6) ensures that∑
i

f
(n)
i �i = 0 n > 0, (9)

where �i = 1, cix, ciy . However, the second moments of the f
(n)
i are not zero:∑

i

f
(1)
i ciαciβ = −2c2

s ρτSαβ (10)

[17]. Sαβ is the rate of strain tensor. Equations (9) and (10) provide six equations for the nine
f

(1)
i ’s. Note, by combining equations (8) and (2):

f
†
i (r, t) = f

(0)
i (r, t) +

[
f

(1)†
i ≡

(
1 − 1

τ

)
δtf

(1)
i

]
+ o

(
δ2
t f

(2)
i

)
. (11)
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3. Mass-conserving lattice closure algorithm

Our previous method [2] allows a boundary pressure freely to develop; so boundary node
density varies. In contrast, the present method conserves the density associated with what
we designate fluid links (see below). This changed assumption raises key limitations in our
original analysis and lends the resulting method to a wider range of geometries and situations
(in particular, to wetting). In this section we shall treat planar and corner boundaries in separate
subsections.

In terms of the lB method, our purpose may be summarized as follows. Momentum
densities, fi , to populate the links of a boundary node shall be constructed, subject to the
requirements that they (the fi’s) should (i) evolve according to rules demonstrably equivalent
to those governing bulk nodes; (ii) are consistent with a known local velocity; (iii) conserve
mass locally.

3.1. Flat boundary

A plane 3D boundary containing the shortest lattice links is the analogue of the flat, 2D
boundary considered in this section. As we shall indicate, the 2D case considered addresses
all the issues which emerge when implementing the method in 3D.

All non-boundary nodes are assumed to be evolved according to (2). Figure 1 shows a
boundary site on the D2Q9 lattice. The dotted line indicates the supposed uppermost extent of
the lattice fluid. Links indexed i = 1, 2, 3 are cut by the boundary. At the end of a propagation
step, a pre-collision value of lattice momentum density, fi , exists for all links i �= 5, 6, 7
(a situation represented by the use of empty circles in figure 1).

The boundary velocity provides two conditions on (moments of) the fi’s, through
equations (4), but there are three post-collision f

†
i ’s which need to be obtained, namely

f
†
5 , f

†
6 and f

†
7 in the present case. Note that, in the analogous case of 3D, a boundary velocity

provides three conditions on moments of the fi’s; for the D3Q15 lattice five post-collision
f

†
i ’s would be required; the essential problem of under-specification remains.

At a boundary node, links designated live require values of fi (links i �= 1, 2, 3 in
figure 1 are all live); these links connect to the flow domain and influence the subsequent
evolution of adjacent nodes. The fi’s on dead links are lost as they propagate into the boundary.
For the geometry of figure 1, pre-collision fi’s exist for links i = 0, 1, 2, 3, 4, 8 (some of which
are dead, note), post-collision f

†
i ’s are required only for live links i = 0, 4, 5, 6, 7, 8.

Boundary mass conservation may only be defined in terms of equality between pre-
collision and post-collision subtotals of the fi’s and the f

†
i ’s. For the geometry of figure 1

local mass conservation may be expressed as
M ≡

∑
i �=5,6,7

fi


 =

∑
i �=1,2,3

f
†
i . (12)

For the remainder of the present subsection all equations and expressions apply to the
particular geometry of figure 1. We proceed to construct a post-collision fi , instantaneously
correct to the accuracy of the bulk lB model

(
o
(
f

(1)
i

))
, for all links i = 0, . . . , 8, in the

following principal steps:

(1) Determine a mass-conserving boundary node density, ρ ′, and hence the f
(0)
i (ρ ′, u0),

i = 0, . . . , 8. Effective density ρ ′ is calculated such that∑
i �=5,6,7

f
(0)
i (ρ ′, u0) = M, (13)

where M is defined in equation (12).
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(2) Determine pre-collision f
(1)
i ’s which satisfy an under-specified system after equations (9)

and (10).
(3) Collide and propagate the boundary sites according to equation (2).

Before expanding steps 1–3, it is necessary briefly to make three important points regarding
the ‘under-specified’ system used for f

(1)
i ’s. Still considering the y = constant boundary in

figure 1: (i) to conserve the total mass on (only) live links, we choose to modify the constraints
on f

(1)
i ’s as follows:

∑
i �=1,2,3

f
(1)
i = 0, (14)

∑
i

f
(1)
i ciα = 0, (15)

∑
i

f
(1)
i ciαciβ = −2

3
ρ ′τSαβ. (16)

The corresponding post-collision values of f
(1)†
i are all clearly proportional (see equation (11))

to the solution of the system in equations (14)–(16). (ii) The condition of local boundary mass
conservation is stated by equation (14). In treating a forced fluid at a boundary, particular
care must be exercised around equation (14); see subsection 3.3. (iii) Equations (14)–(16)
essentially characterize the 3D case of a flat boundary, the only modification necessary being
the subscript range in equation (14), which, in the case of a 3D planar boundary on D3q15,
needs to exclude the particular five cut links.

Step 1. Evaluate M from the definition in equation (12). Since boundary velocity u0 is known,
equations (5) and (13) provide an identity for effective density parameter ρ ′:

ρ ′ = M∑
i �=1,2,3 tp

[
1 + u0·ci

c2
s

− u2
0

2c2
s

+ (u0·ci )2

2c4
s

] = 12M

10 + 6u0y − 6u2
0y

. (17)

It is now possible to assign f
(0)
i (ρ ′, u0). Note that over the entirety of links i = 0, . . . , 8 at

our boundary node, mass is not conserved. However, on links i �= 1, 2, 3 there is a total mass
M. The generalization of this step to 3D is transparent.

Step 2. Whilst the assumed boundary velocity, u0 and ρ ′ uniquely determine f
(0)
i , strain rate

Sαβ is used to fix the f
(1)
i ’s. The nine f

(1)
i , i = 0, . . . , 8 satisfy the six equations (14)–(16)

reproduced and re-formatted below, for convenience:

f
(1)
0 +0f

(1)
1 +0f

(1)
2 +0f

(1)
3 +f

(1)
4 +f

(1)

5 +f
(1)
6 +f

(1)
7 +f

(1)
8 = 0,

−f
(1)
1 +f

(1)
3 +f

(1)
4 +f

(1)

5 −f
(1)
7 −f

(1)
8 = 0,

f
(1)
1 +f

(1)
2 +f

(1)
3 −f

(1)

5 −f
(1)
6 −f

(1)
7 = 0,

f
(1)
1 +f

(1)
3 +f

(1)
4 +f

(1)

5 +f
(1)
7 +f

(1)
8 = −2ρτ/3 Sxx,

f
(1)
1 +f

(1)
2 +f

(1)
3 +f

(1)

5 +f
(1)
6 +f

(1)
7 = −2ρτ/3 Syy,

−f
(1)
1 +f

(1)
3 −f

(1)

5 +f
(1)
7 = −2ρτ/3 Sxy.

(18)

Note that the terms in the first equation with coefficient 0 are removed from the equivalent
system of equations in [2] by our altered assumptions. The strain rates in the last three
equations were all measured using spatially o(3) accurate finite differences. For the shadow
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Table 1. Diagrammatic representation of the forbidden f
(1)
i combinations for the planar boundary

geometry of figure 1. The small (large) dot represents inclusion (exclusion) of the rest link.

Forbidden set of three free f
(1)
i ’s Link representation

f
(1)
1 , f

(1)
2 , f

(1)
3

f
(1)
3 , f

(1)
4 , f

(1)

5

f
(1)

5 , f
(1)
6 , f

(1)
7

f
(1)
1 , f

(1)
7 , f

(1)
8

f
(1)
0 , f

(1)
4 , f

(1)
8

case of a 3D, D3Q15 planar boundary, the corresponding system would contain ten equations
in 15f

(1)
i ’s.

To solve this under-determined system of equations (18), select a triplet of f
(1)
i ’s as free

variables, in terms of whose values the remaining six basic variables are to be found. Certain
triplets of the free f

(1)
i ’s are forbidden; this may be understood by temporarily re-defining

quantities as follows:

g1 ≡ f
(1)
1 + f

(1)
2 + f

(1)
3

g2 ≡ f
(1)

5 + f
(1)
6 + f

(1)
7

(19)
g3 ≡ f

(1)
3 + f

(1)
4 + f

(1)

5

g4 ≡ f
(1)
1 + f

(1)
7 + f

(1)
8

g5 ≡ f
(1)
0 + f

(1)
4 + f

(1)
8 ,

in terms of which gi’s the first five of the six equations (18) become

g2 + g5 = 0 g3 − g4 = 0 g1 − g2 = 0
(20)

g3 + g4 = −(2ρτ/3)Sxx g1 + g2 = −(2ρτ/3)Syy.

System (20) may be solved for the g1, . . . , g5 in terms of the Sαβ . Clearly, a value for g1

(say) constrains the three f
(1)
i ’s contained in its definition, f

(1)
1 , f

(1)
2 and f

(1)
3 , to a particular

sum. Several forbidden triplets of free f
(1)
i ’s arise in this way; their elements are defined

in table 1 alongside a diagrammatic interpretation. Note, the sixth equation in the system
(18) cannot be expressed in terms of g1, . . . , g5 (scrutiny of the second column in table 1
demonstrates this) and so does not yield relevant information.

The planar D3Q15 boundary would be subject to equivalent considerations; forbidden
quintuplets of f

(1)
i ’s now occur in precisely analogous ways.

In addition to the structure of system (20), the set of f
(1)
i ’s selected as free variables

should depend upon which directions ci contain pre-collision information originating in the
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flow domain. Therefore, in order to solve the system of equations (14)–(16), choose free
f

(1)
i ’s which (i) are not a forbidden set and (ii) have accessible values. Criterion (ii) requires

that one must select f (1)’s corresponding to defined pre-collision fi’s; The third row in table 1
corresponds to a set of f

(1)
i ’s each of which originates outside the boundary. Here pre-collision

values of f
(1)
i ≈ fi − f

(0)
i , i = 0, 1, 2, were chosen, making the following solution for the

particular boundary case represented in figure 1:

f
(1)
3 = −κSyy − f

(1)
1 − f

(1)
2 ,

f
(1)
4 = −κSxy + 3

2κSyy − 1
2f

(1)
0 + 2f

(1)
1 + f

(1)
2 ,

f
(1)

5 = − 1
2κ(Sxx + Syy) − 1

2κSxxκSxy + 1
2f

(1)
0 − f

(1)
1 = − 1

2κSxxκSxy + 1
2f

(1)
0 − f

(1)
1 , (21)

f
(1)
6 = 3κSxx − f

(1)
0 − f

(1)
2 ,

f
(1)
7 = − 1

2κSxx − κSxy + 1
2f

(1)
0 + f

(1)
1 + f

(1)
2 ,

f
(1)
8 = − 1

2κSyyκSxy − 1
2f

(1)
0 − 2f

(1)
1 − f

(1)
2

where κ ≡ c2
s ρτ . Similar considerations to those imposed to arrive at the above solution

would apply to the 3D, D3Q15 planar boundary.

Step 3. The pre-collision boundary node f
(1)
i ’s constructed in step 2 are collided, using

equation (11), then added to the corresponding f
(0)
i (ρ ′, u0), yielding a post-collision

momentum density:

f
†
i (r, t) = f

(0)
i (ρ ′, u0) +

(
1 − 1

τ

)
f

(1)
i . (22)

Propagation completes the evolution of our boundary site. Step 3 generalizes to 3D without
modification.

3.2. Internal and external corners

It is an advantage to be able to treat internal and external corners with the method outlined in
section 3.1.

Internal corner. Figure 2 shows a top-left internal corner boundary node. The dotted line
shows the supposed location of the boundary. Quantities f3, f7 (links represented by broken
lines) are ghost (not, note, dead) quantities which never participate. f

†
0 , f

†
4 , f

†
5 and f

†
6 are

required. For the geometry of figure 2 the appropriate value of M is

M ≡
∑

i �=3,4,5,6,7

fi, (23)

and the value of ρ ′ is therefore

ρ ′ = M∑
i �=1,2,3,7,8 tp

[
1 + u0·ci

c2
s

− u2
0

2c2
s

+ (u0·ci )2

2c4
s

] ,

= 36M

25 − 15u0x + 15u0y − 9u0xu0y − 15u2
0x − 15u2

0y

. (24)

The last expression for ρ ′ has complicated dependence upon u0. However, this does not appear
to affect the stability of the resulting scheme. Neither does the fact that the denominator can
vanish for u0 ≈ 1, as this value of velocity violates the usual restriction u0 < 0.1.

The mass-conservation condition corresponding to equation (14) for this geometry is∑
i �=1,2,3,7,8

f
(1)
i = 0. (25)
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c1
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c3

c4

c5c7

8c

6c
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i = 6

i = 8

i = 7
i = 5

i = 4

i = 3

i = 0

Figure 2. A boundary node on an internal corner. The walls locations are denoted by the dashed
lines. The node is taken to lie in the fluid with the rest link. Propagated link data are denoted by a
solid arrowhead or solid square on the link, unavailable link information (lack of data) by an open
circle. Ghost links, which never participate, are indicated by open arrowheads.

Solving for pre-collision f
(1)
i ’s now follows the procedure in section 3.1. No triplets of

obtainable f
(1)
i ’s arise for the internal corner geometry.

External corner. Figure 3 shows a top-left external corner. The dotted line shows the supposed
location of the boundary. f

†
0 , f

†
1 , f

†
2 , f

†
3 , f

†
4 , f

†
5 , f

†
6 and f

†
8 are required. For M and ρ ′ we

now have

M =
∑
i �=1

fi, (26)

and

ρ ′ = M∑
i �=3 tp

[
1 + u0·ci

c2
s

− u2
0

2c2
s

+ (u0·ci )2

2c4
s

] ,

= 36M

35 + 3u0x − 3u0y − 3u2
0x + 9u0xu0y − 3u2

0y

. (27)

The mass-conservation condition corresponding to equation (14) for this geometry is∑
i �=5

f
(1)
i = 0. (28)

Solving for pre-collision f
(1)
i ’s again follows the procedure in section 3.1. Triplets of

evaluatable f
(1)
i ’s now forbidden are listed in table 2.
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c1

c2

c3

c5c7

8c

6c

c4

i = 2

i = 4i = 8 i = 0

i = 3

i = 7 i = 6 i = 5

i = 1

Figure 3. A boundary node on an external corner. The walls locations are denoted by the dashed
lines; the node is taken to lie in the fluid. Propagated link data are denoted by a solid arrowhead
or solid square on the link, unavailable link information (lack of data) by an open circle.

Table 2. Diagrammatic representation of the forbidden combinations of f
(1)
i ’s as free variables,

for the external corner geometry of figure 3. Note that a large dot indicates inclusion of the rest
link. Note also that, unlike table 1, only triplets which contain evaluatable f

(1)
i ’s are listed here.

Forbidden set of three free f
(1)
i ’s Link representation

f
(1)
0 , f

(1)
6 , f

(1)
7

f
(1)
0 , f

(1)
4 , f

(1)
3

3.3. Other cases: forces close to the boundary

Clearly other geometries and other situations are amenable to the boundary analysis of this
section. Situations in 3D, corresponding to any number of cut links are a straightforward
generalization of current method. Further extension to off-lattice boundaries is more
complicated but it requires no fundamental modification to the method; the process will
be fully reported elsewhere, in context of Lagrangian particles. The situation encountered
when considering multiple immiscible fluids does, however, merit further comment.

All immiscible lattice Boltzmann fluids have interfaces supported by segregating forces
impressed between different fluids. The forcing applied generally conserves mass over
all lattice links ci, and is represented by an appropriate choice of source term tpG in
equation (2). For lattice fluid interfaces at a boundary (the wetting problem), it is therefore
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necessary to apply a segregating force to fluids at boundary fluid node. This force will
not, in general, conserve mass on only the uncut links. Accordingly, it is necessary to
re-state our mass-conservation condition (equation (14) for the planar boundary) to apply post-
collision. The essential extension of our boundary method to the wetting problem involves (i)
redefinition of the f (i)’s to contain the source terms tpG in equation (2) and (ii) applying the
mass-conservation constraint to post-collision f

(i)†
i ’s. So, for the planar boundary of figure 3,

equation (14) is replaced:∑
i �=1,2,3

(
f

(1)†
i + tpG

) = 0. (29)

In fact the presence of a source term requires corrections in equation (10) [18] which
complicates solution of the wetting problem.

4. Results

To demonstrate that our boundary closure is robust, to verify its time resolution and to
show that it accommodates moving boundaries we considered a lattice fluid initially at rest
(fi(r, 0) = f

(0)
i (ρ, 0) everywhere) between two horizontal planar boundaries y = 0−,W +;

the latter was impulsively started from rest at t = 0+ to velocity (u0, 0). The analytic solution
to this transient flow is

vx(y, t) = u0

W
y +

2u0

π

∑
m

(−1)m

m
sin

(mπy

W

)
× e−m2π2 t̄ , t̄ = νt

W 2
. (30)

Here t̄ represents a dimensionless time parameter. Snapshots of the developing flow across
the whole width of the duct, obtained for discrete times t = 10, 100, 1000 with collision
parameter, 1/τ = 0.6, 1.0, 1.6, were collected. Results with the present method are identical
to those presented elsewhere [2]; our earlier remarks [2] apply.

To make comparison with the popular and robust methods of on-link and mid-link bounce-
back boundary conditions, steady-state duct flow was simulated. This requires u0 = 0. Planar
boundaries, taken to be parallel to the x-direction, were represented by (a) on-link bounce-
back boundary conditions (b) mid-link bounce back and (c) the method of section 3.1; periodic
boundary conditions were used in the y-direction. Flow rate and hence Reynolds’ number,
Re, was fixed by the constant parameter G in equation (2). Note that G = 0 on the boundaries.
The corresponding analytical solution is(

v0(y) ≡ G

6ρν
y(W − y), 0

)
. (31)

The scalar difference between the measured steady-state flow profile, (vm(y), 0):

�W ≡
∑
y �=0

|vm(y) − v0(y)| , (32)

was measured at constant Re = 0.5 for a range of lattice resolutions. The latter was
parameterized by the duct width W = 10 × 2N,N � 5.

The data of figure 4 show the value of �W as a function of resolution for boundary methods
(a)–(c). The shortcomings of the first-order accurate ‘on-link’ bounce-back technique (a) in
terms of the reduced accuracy of the solution close to the boundaries are documented elsewhere
[2]. Mid-link bounce-back (b) and the method of section 3.1 (c) are both seen to be second-
order accurate in spatial gradient (from the gradient in figure 4), with the latter slightly more
accurate and, of course, capable of representing a boundary with any instantaneous velocity
|u0| < 0.1.
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Figure 4. Error, �W , defined in equation (32), as a function of lattice resolution. The latter
is measured by lattice width W . Re = 0.5. These data represent (i) bounce-back, (ii) mid-link
bounce-back, (iii) our non-mass-conserving method and (iv) our current mass-conserving boundary
conditions. 3.1.
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Figure 5. Steady-state stream function for a 2D square lid-driven cavity. Data correspond to a
square box 170 × 170. The single relaxation parameter was τ = 0.77; the density parameter
ρ = 1.8. For the data shown Re ∼ 100. The four internal corners and the planar boundaries were
simulated using the method of section 3.1; corners in contact with the moving (top) lid were moved
with the lid velocity. The cavity boundaries correspond to x = 0, 170, y = 0, 170; the slightly
enlarged plot area facilitates resolution of the stream function’s corner features.

In respect of figure 4, we note that mid-link bounce-back actually appears to perform
well. However, the discussion below indicates that caution should be exercised in attributing
second-order accuracy to mid-link bounce back.

In fact the errors calculated in figure 4 represent mid-link bounce-back in its most
favourable light. Recall that the mid-link bounce-back lattice closure produces a no-slip
boundary off-lattice. Its error (from equation (32)) allowed (a) for channel width variation
and (b) departure of the measured Re from that predicted. In respect of (a), an effective
channel width was calculated from a v0(y) distribution obtained by extrapolating a parabola
fitted to the bulk lattice positions’ measured velocity. Also, the mid-link bounce-back nodes
themselves were not included in the summation of equation (32). The uncertainty in the
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Figure 6. Detail of the steady-state stream function for a 2D square lid-driven cavity, shown in
figure 5. This image corresponds to the weak, detached flow in the secondary vortex encountered
in the bottom-right corner of the cavity.
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Figure 7. The y-velocity distribution along a vertical line x = 169, close to right-hand x = 170
boundary of the lid-driven cavity flow depicted in figures 5 and 6; the change in the sign of the
y velocity corresponds to the point in which the stream function detaches.

channel width was thus effectively ignored, as was the associated variation in the channel total
discharge. Neglecting artefacts of the mid-link bounce-back method means that the measured
Re differs from that predicted. By considering a parabolic profile, v0(y), corresponding to the
Re predicted (on the basis of the channel pressure gradient, G) and considering all nodes, the
error associated with mid-link bounce-back increases at all resolutions W and reduces more
slowly as W increases. Under similar conditions, the error associated with the present method
remains as indicated in figure 4. It is nevertheless interesting to note that, by compensating for
its artefacts, the accuracy of the mid-link bounce-back method is promoted from the widely
quoted o(1.5) to second order.

To assess the accuracy of the corner boundaries of subsection 3.2, a square, 2D lid-driven
cavity was simulated over a small range of Re ≈ 93 (where a secondary vortex is known first
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to appear) and resolutions. See figure 5 caption for simulation data. Figure 5 shows the stream
function obtained with our new boundary conditions enforced over the entire boundary; in
particular, the top corners of the enclosure were assumed to be moving with the lid speed.
Figure 6 shows detail of the stream function in the bottom-right corner of the flow. Figure 7
shows the y-component of velocity along the right-hand boundary; the point of detachment is
clearly visible in these data.

5. Conclusion

We have set out and validated a very adaptable method for closing a lattice Boltzmann
simulation lattice by calculating appropriate values for the set of ‘missing’ momentum
densities, subject to the condition of local mass conservation. Like our previous algorithm,
which allowed pressure adaptation at the boundary [2], the current method is demonstrably
accurate, flexible and instantaneously correct. However, the present method can also apply
(i) to an increased range of geometries other than the set presented here and (ii) to boundaries
where fluid forces need to be impressed—in particular, the case of immiscible fluid–fluid
interfaces at a boundary.
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